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LETTER TO THE EDITOR 

On the Lenz vector 

R L Schafir 
Department of Mathematics, King’s College, Strand, London WC2 

Received 29 May 1981 

Abstract. Some general considerations are applied to the Lenz vector, and a recent work on 
the subject is discussed. 

Over the years there has been a recurring interest in the Lenz vector of the classical 
Kepler problem. Recently in this journal Prince and Eliezer (1981) have set out to find 
an associated symmetry group of point transformations for this vector, even though it is 
not associated via Noether’s theorem with any groups of point transformations which 
leave the action invariant. The investigation of this question brings out a number of 
general considerations. 

A first point which should be noted is that for any autonomous dynamical system in n 
degrees of freedom there exists, at least locally, and to within functional independence, 
2n - 1 constants of the motion which do not involve time explicitly. For in a region 
(free of singularities or zeros) of the 2n-dimensional space of positions and velo- 
citieslmomenta, in which the system is represented by a flow of curves (one curve 
through each point), take an arbitrary (2n - 1)-dimensional hypersurface crossing the 
curves, choose any (2n -1) independent functions on the hypersurface, and drag each 
one along the curves so that it becomes a constant of the motion. (Similarly for any 
system, autonomous or non-autonomous, there are 2n constants of the motion which 
do involve the time.) Thus, for the Kepler problem in two or three dimensions there are 
respectively up to three or up to five independent constants of the motion not involving 
time. If further constants are not required to be functionally independent-and the 
components of Lenz’s vector are not independent of the usual constants for the Kepler 
problem-then one can obviously construct suitable functions to form the components 
of a vector which is to be constant, and point in any chosen direction-such as the major 
axis. There is nothing significant merely in the existence of a conserved two- (respec- 
tively, three-) component object. 

However, when an object is called a vector, that usually means more than just that it 
has two (three) components. The title implies a transformation law. The feeling that 
the Lenz vector is a vector comes from its form in three dimensions, constructed by 
vector operations from objects which are vectors under rotation: 

R = r A L - p r / r  (1) 

(2) 
What one has in mind when one sees a formula like this is that it represents a directed 
object in configuration space, given in any of a class of coordinate systems connected by 

2 = i r - ( r  r )r  - pr/r .  
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rotations, i.e. it is a Cartesian vector of conserved functions, is invariant in functional 
form under rotation, and it remains conserved for the transformed solution. 

This is to require that (for the simpler case of two dimensions now) for some 
functions Vl, V2 of the constants of the motion c1, c2, c 3 :  

cos Q VI -sin aV2 = Vl(EA) 

sin cy VI + cos Q V2 = v2(2A) 
(3) 

with EA = cA(f’(x’)). Thus there are two equations for the two functions, which in 
general provides a solution. The analogy of this argument should still hold for a general 
system. Thus, there still seems nothing peculiar to the Kepler problem in possessing a 
vector constant of the motion-though for general systems the corresponding vectors 
are unlikely to be as simple in form as Lenz’s vector. 

It is when one sets up a transformation between constants of the motion and 
infinitesimal invariances that a real restriction occurs. There are two very natural 
requirements of a transformation between symmetries and conservation laws, namely, 
that for a suitable class of transformations: (i) the transformed infinitesimal invariance is 
associated with the transformed constant; (ii) if a number of constants make up a 
geometric object in configuration space (e.g. the Lenz vector), and each corresponds to 
an infinitesimal point invariance, then the vectors of the latter make up an object in 
configuration space with a corresponding transformation law. 

The standard method of associating infinitesimal invariances with constants of the 
motion does have such properties. If f is the constant of the motion and F the 
associated vector field, the standard transformation may be written 

(4) 
-1 F = w ograd f 

where w is the closed two-form, given in the 2n-dimensional space of positions and 
velocities by 

In the (2n + 1)-dimensional space of time, positions and velocities, w is given by 

aL a2L a2L +- k i  +- 
ax’ a x ’ a i  a t a i ‘  a i  ‘ a i  
.- 

and the ‘w-” in (4) is now interpreted as a mapping to equivalence classes of vector 
fields differing by multiples of the motion vector field (Crampin 1977). These results 
are obtained by transforming the canonical two-form of Hamiltonian theory back to the 
Lagrangian picture by the Legendre transformation; the transformation from constants 
to invariances is by this means expressed in a form which covers both the usual 
Lagrangian result (Noether’s theorem), and the standard results in the Hamiltonian 
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picture. As the author has shown elsewhere (Schafir 1981) the transformation (4) has 
the invariance properties mentioned above, and indeed can be characterised by them. 

The Kepler problem in two dimensions admits a three-parameter group of point 
transformations: time translation, rotation, and the transformations generated by the 
vector field: 

t a / a t  + $X a/ax + $Y a/ay -- i.i a / a i  - $9 8 / 8 9  ( 7 )  
(see Prince and Eliezer 1981). For the usual Lagrangian, (7)  is not the image of any 
function under w-lograd, while at the same time the symmetries corresponding to 
Lenz’s vector are ‘hidden’ (i.e. they are not point transformations). Prince and Eliezer 
looked for an alternative transformation between constants of the motion and 
infinitesimal invariances which would associate both components of the Lenz vector 
with the vector field ( 7 ) .  Their method, translated into geometrical terms, is to look for 
constants of both motions, the dynamical motion field, and the flow generated by (7). 
(Thus they are imitating one feature of the usual theory, the skew symmetry of w, which 
causes any function to be constant along its own associated direction.) Clearly there 
exist two such functions, to within functional independence; they simply choose the two 
which are the components of Lenz’s vector. 

However, there is a very high degree of arbitrariness in this result. Also, it’lacks the 
first of the invariance properties referred to above (the second is inapplicable, since they 
are associating two constants of the motion with one infinitesimal invariance). For it is 
not the case even under the same invariances of the theory, that the transformed Lenz 
vector corresponds to the transformed vector field. For instance, under the finite 
transformations generated by ( 7 )  itself, the vector field is of course invariant; but the 
Lenz vector, transforming as a vector-as opposed to each component transforming as 
a scalar-is not invariant. 

Finally, note that the invarance group of a system is initially infinite-dimensional, 
and is independent of any choice of a Lagrangian. The introduction of a Lagrangian 
gives us a mapping from the constants of the motion into, but not onto, the infinitesimal 
generators of invariances, for which the image vector fields generate a finite-dimen- 
sional group. For the two-dimensional Kepler problem, with the usual Lagrangian, this 
group is S 0 ( 3 ) ,  and this fact has upon quantisation, the physical consequence of 
degeneracy of the spectrum (Jauch and Hill 1940). A different Lagrangian would in 
general give rise to a different transformation and a different finite group, while as we 
have seen, a transformation which does not arise from a Lagrangian is likely to lack 
some obviously necessary invariance properties. 

I am indebted to Professor F A E Pirani for helpful comments, resulting in the 
redrafting of an earlier version of this Letter. 
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